Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7038, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923808

RESUMO

Organohalide-respiring bacteria are key organisms for the bioremediation of soils and aquifers contaminated with halogenated organic compounds. The major players in this process are respiratory reductive dehalogenases, corrinoid enzymes that use organohalides as substrates and contribute to energy conservation. Here, we present the structure of a menaquinol:organohalide oxidoreductase obtained by cryo-EM. The membrane-bound protein was isolated from Desulfitobacterium hafniense strain TCE1 as a PceA2B2 complex catalysing the dechlorination of tetrachloroethene. Two catalytic PceA subunits are anchored to the membrane by two small integral membrane PceB subunits. The structure reveals two menaquinone molecules bound at the interface of the two different subunits, which are the starting point of a chain of redox cofactors for electron transfer to the active site. In this work, the structure elucidates how energy is conserved during organohalide respiration in menaquinone-dependent organohalide-respiring bacteria.


Assuntos
Bactérias , Oxirredutases , Oxirredutases/metabolismo , Vitamina K 2/metabolismo , Oxirredução , Transporte de Elétrons , Bactérias/metabolismo , Biodegradação Ambiental
2.
Front Microbiol ; 13: 838026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283847

RESUMO

Organohalide respiration (OHR) is a bacterial anaerobic process that uses halogenated compounds, e.g., tetrachloroethene (PCE), as terminal electron acceptors. Our model organisms are Dehalobacter restrictus strain PER-K23, an obligate OHR bacterium (OHRB), and Desulfitobacterium hafniense strain TCE1, a bacterium with a versatile metabolism. The key enzyme is the PCE reductive dehalogenase (PceA) that is encoded in the highly conserved gene cluster (pceABCT) in both above-mentioned strains, and in other Firmicutes OHRB. To date, the functions of PceA and PceT, a dedicated molecular chaperone for the maturation of PceA, are well defined. However, the role of PceB and PceC are still not elucidated. We present a multilevel study aiming at deciphering the stoichiometry of pceABCT individual gene products. The investigation was assessed at RNA level by reverse transcription and (quantitative) polymerase chain reaction, while at protein level, proteomic analyses based on parallel reaction monitoring were performed to quantify the Pce proteins in cell-free extracts as well as in soluble and membrane fractions of both strains using heavy-labeled reference peptides. At RNA level, our results confirmed the co-transcription of all pce genes, while the quantitative analysis revealed a relative stoichiometry of the gene transcripts of pceA, pceB, pceC, and pceT at ~ 1.0:3.0:0.1:0.1 in D. restrictus. This trend was not observed in D. hafniense strain TCE1, where no substantial difference was measured for the four genes. At proteomic level, an apparent 2:1 stoichiometry of PceA and PceB was obtained in the membrane fraction, and a low abundance of PceC in comparison to the other two proteins. In the soluble fraction, a 1:1 stoichiometry of PceA and PceT was identified. In summary, we show that the pce gene cluster is transcribed as an operon with, however, a level of transcription that differs for individual genes, an observation that could be explained by post-transcriptional events. Despite challenges in the quantification of integral membrane proteins such as PceB and PceC, the similar abundance of PceA and PceB invites to consider them as forming a membrane-bound PceA2B protein complex, which, in contrast to the proposed model, seems to be devoid of PceC.

3.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32436568

RESUMO

Deep-sea environments can become contaminated with petroleum hydrocarbons. The effects of hydrostatic pressure (HP) in the deep sea on microbial oil degradation are poorly understood. Here, we performed long-term enrichments (100 days) from a natural cold seep while providing optimal conditions to sustain high hydrocarbon degradation rates. Through enrichments performed at increased HP and ambient pressure (AP) and by using control enrichments with marine broth, we demonstrated that both pressure and carbon source can have a big impact on the community structure. In contrast to previous studies, hydrocarbonoclastic operational taxonomic units (OTUs) remained dominant at both AP and increased HP, suggesting piezotolerance of these OTUs over the tested pressure range. Twenty-three isolates were obtained after isolation and dereplication. After recultivation at increased HP, an Alcanivorax sp. showed promising piezotolerance in axenic culture. Furthermore, preliminary co-cultivation tests indicated synergistic growth between some isolates, which shows promise for future synthetic community construction. Overall, more insights into the effect of increased HP on oil-degrading communities were obtained as well as several interesting isolates, e.g. a piezotolerant hydrocarbonoclastic bacterium for future deep-sea bioaugmentation investigation.


Assuntos
Petróleo , Água do Mar , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos
4.
BMC Genomics ; 17: 117, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879123

RESUMO

BACKGROUND: Marine cold-temperature environments are an invaluable source of psychrophilic microbial life for new biodiscoveries. An Arctic marine bacterial strain collection was established consisting of 1448 individual isolates originating from biota, water and sediment samples taken at a various depth in the Barents Sea, North of mainland Norway, with an all year round seawater temperature of 4 °C. The entire collection was subjected to high-throughput screening for detection of extracellular laccase activity with guaiacol as a substrate. RESULTS: In total, 13 laccase-positive isolates were identified, all belonging to the Psychrobacter genus. From the most diverse four strains, based on 16S rRNA gene sequence analysis, all originating from the same Botryllus sp. colonial ascidian tunicate sample, genomic DNA was isolated and genome sequenced using a combined approach of whole genome shotgun and 8 kb mate-pair library sequencing on an Illumina MiSeq platform. The genomes were assembled and revealed genome sizes between 3.29 and 3.52 Mbp with an average G + C content of around 42%, with one to seven plasmids present in the four strains. Bioinformatics based genome mining was performed to describe the metabolic potential of these four strains and to identify gene candidates potentially responsible for the observed laccase-positive phenotype. Up to two different laccase-like multicopper oxidase (LMCO) encoding gene candidates were identified in each of the four strains. Heterologous expression of P11F6-LMCO and P11G5-LMCO2 in Escherichia coli BL21 (DE3) resulted in recombinant proteins exhibiting 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and guaiacol oxidizing activity. CONCLUSIONS: Thirteen Psychrobacter species with laccase-positive phenotype were isolated from a collection of Arctic marine bacteria. Four of the isolates were genome sequenced. The overall genome features were similar to other publicly available Psychrobacter genome sequences except for P11G5 harboring seven plasmids. However, there were differences at the pathway level as genes associated with degradation of phenolic compounds, nicotine, phenylalanine, styrene, ethylbenzene, and ethanolamine were detected only in the Psychrobacter strains reported in this study while they were absent among the other publicly available Psychrobacter genomes. In addition, six gene candidates were identified by genome mining and shown to possess T1, T2 and T3 copper binding sites as the main signature of the three-domain laccases. P11F6-LMCO and P11G5-LMCO2 were recombinantly expressed and shown to be active when ABTS and guaiacol were used as substrates.


Assuntos
Genoma Bacteriano , Oxirredutases/metabolismo , Filogenia , Psychrobacter/classificação , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Sequência de Bases , Temperatura Baixa , DNA Bacteriano/genética , Dados de Sequência Molecular , Noruega , Psychrobacter/enzimologia , Psychrobacter/genética , Psychrobacter/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...